
1

Redressing the Balance

Burton Smith
Cray Inc.

2

The two types of supercomputers

! Loosely coupled systems (Type T)
" Prices based on Transistor cost
" Performance measured by Linpack Rmax
" Low bandwidth interconnection networks
" PC-intended processors

! Tightly coupled systems (Type C)
" Prices based on Connection cost
" Performance measured by sparse MV multiply
" High bandwidth interconnection networks
" Custom processors

! Each type has its uses (and misuses)

3

Relative strengths

Type T:
! Arithmetic
! Well-balanced workloads
! Dense linear algebra
! Explicit methods
! Regular, non-adaptive
meshes
!Slowly varying data bases
! Projects that are insensitive

to programming effort

Type C:
! Data access
! Poorly balanced workloads
! Sparse linear algebra
! Implicit methods
! Irregular, adaptive meshes
! Rapidly varying data bases
! Projects that are sensitive

to programming effort

Some sites have applications spanning both columns
- They may want to employ both types of system

4

One sort of Type C application

! A simulation problem with a wide spectrum of time and
length scales may need an implicit finite difference
scheme

" Convergence may demand such an approach
" Often the reason is merely computational feasibility

! Long-range communication will occur if the resulting
time steps are big (the reason for the implicit scheme)

! Implicit methods for nonlinear PDEs solve a sparse
linear system several times per time step

" Often the sparse matrix is not very well-conditioned
! For heterogeneous problems, load imbalance is an

issue
" Irregular adaptive meshes are another source of

imbalance

These attributes make climate simulation a Type C
problem

- What application did you think I was talking about ;->
?

5

Where did all the Type C systems
go?

! Type C systems have been widely deprecated
" Some erroneously believed they cannot be scaled up
" Others wrongly believed they are unnecessary
" Still others keep building them, e.g. NEC

! The consequence was unfortunate for Type C
applications

" Most of a Type T system’s resources are wasted
" Algorithm choice is greatly restricted
" Performance becomes highly sensitive to fine details
" Programming becomes a heroic and frustrating task

! Type T systems can’t go it alone
" They don’t have enough global bandwidth
" This is all but inevitable given PC-intended processors
" The reason: too much overhead

6

Bandwidth, overhead, and latency
! In the LogP model, well-known in computer science:

" L is the network transport latency
" o is the processor overhead
" g is the reciprocal bandwidth (the “gap”)
" P is the number of processors

! Time(size) = size∗ g + 2∗ o + L

overhead

space
time

overheado

L

network transport

size∗ g

7

“Latency” has several meanings

! It means 2∗ o + L for some, L for others
" Each is a legitimate latency, but for different

subsystems
" Most who ask for a “low latency network” really want

low o
! Some want “latency” to mean size∗ g + 2∗ o + L

" This is not so useful
! We should at least try to get our names straight

" I will use the LogP definitions

8

Latency tolerance (latency hiding)

! Latency can be tolerated by using parallelism
" A new transmission can start after waiting max(size∗ g,

o)
" LTTime(n, size) = (n - 1)∗ max(size∗ g, o) + size∗ g + 2∗ o

+ L

overhead

space
time

overhead

network transport

overhead

network transport

overhead

network transport
overhead

···

···

9

When does latency tolerance pay
off?

! It depends on the relative magnitudes of size∗ g, o, and
L

" n∗ Time(size) = n∗ (size∗ g + 2∗ o + L)
" LTTime(n, size) = (n - 1)∗ max(size∗ g, o) + size∗ g + 2∗ o

+ L
! If size∗ g >> 2∗ o + L we are “bandwidth bound”

" n-fold latency tolerance saves a mere (n - 1)∗ (2∗ o + L)
" This is never significant

! If o >> size∗ g + L we are “overhead bound”
" n-fold latency tolerance saves about (n - 1)∗ o
" This will roughly halve the time
" Unequal overheads at sender and receiver make it

worse
! If L >> size∗ g + 2∗ o we are “latency bound”

" n-fold latency tolerance saves approximately (n - 1)∗ L
" This is roughly an n-fold time improvement

10

Aside: does message size vary
with P?

! Let’s take PDEs as an example, and assume:
" We have three space dimensions and one time dimension
" We need 16 times the processors to double the resolution

! Each processor gets half as many spatial mesh points
" If the processors are also faster, maybe somewhat more

! For nearest-neighbor communication, message size
shrinks

" Perhaps to 0.52/3 = 0.63 of its former size
! For “Type C-style” all-to-all communication the message

size may shrink to 1/32 of its former value
" There are half as many mesh points per processor and 16

times as many processors to distribute data among
! Your mileage will vary, and will probably get worse

11

Latency tolerance in summary

! It uses parallelism to reduce total transmission time
" It is basically just pipelined data transport

! It is most needed when size∗ g is relatively small
" either because of small size or small g (high bandwidth)
" If size∗ g is large, latency is tolerated within each

message
! It is not particularly effective when overhead is high

" This is the standard situation in Type T systems
! When both o and size∗ g are small, it is invaluable

" Vector processor references to memory
" Multithreaded processor references to memory

! Multithreading can also tolerate synchronization
latency and even branch latency

" But that’s another talk

12

Measuring overhead

! Ping-pong measures 2∗ o + L
! Measuring latency with a logic analyzer and

subtracting it from a ping-pong measurement is one
idea

! Another way is to use the processor’s low overhead
high resolution clock to measure how long the
software takes

" What? Your microprocessor doesn’t have such a
clock?

! A third possibility is to vary the network latency for a
pair of ping-pong measurements and do the math

" Comparing a 10-hop route with a 20-hop, for example
" Usually 2∗ o is much greater than L so you may need a

whole bunch of hops to see the difference
! A fourth way is to see how well latency tolerance

works
A i i l t ti it it

13

Mitigating overhead in Type T
systems

! Classic single-sided messaging doesn’t help much
" Message assembly and disassembly are expensive

! Shared memory is the sine qua non of low overhead
" It will be non-uniform (NUMA), but need not be CC-

NUMA
CC-NUMA has a scaling problem in my opinion

" The Cray T3E and SV2 are coherent but not CC-NUMA
They tolerate latency rather than try to avoid it

! UPC, Titanium, and Co-array Fortran can help quite a
bit

" They provide a NUMA model even over fragmented
memory

" The right hardware can make the overhead pretty small
" Since the hardware assistance is invariably sited in a

coprocessor, synchronization is a source of overhead

14

Reducing the time-to-solution

! Type T systems are harder to program than Type C
systems

" “So many processors, so little time” - Duncan Buell, IDA-
CCS

" Or, perhaps, “the bigger they are, the harder they code”
! “Dusty deck” parallelization has several problems:

" The high cost of whole-program analysis
" Uncertainty about relative run-time complexities

! The MTA compilers really show what can be done
" The level of automation is quite high, but not “dusty deck”

! Higher level programming languages are needed
" To get beyond C++, Java, C#, and other blunt instruments
" To make global program analysis unnecessary

! So, what ever happened to Sisal, anyway?

15

Improving Type T
programmability

! Library-based abstractions help somewhat
" Data layout issues are not addressed

! The aforementioned UPC, Titanium, and Co-array
Fortran are higher level languages than MPI in
practice

" Since data addresses (really subscripts) are
computable by the program, more sophistication is
available

" These languages work just fine on Type C systems
! ZPL kicks the level up another notch

" Higher level operators give it “APL-like” power
" It is pretty competitive in efficiency
" It can also work well on Type C systems

! None of these is the silver bullet we wanted

16

Conclusions

! Not only are some computers unbalanced, our field is!
" Most informed people seem to agree

! Redressing the balance requires Type C systems
" Anyone arguing otherwise protests too much, methinks

! Matters are improving on this front
" Including the possibility of some long range R&D

! And if you think architecture is “over”, Bugs Bunny, the
well-known expert in persiflage, says:

“What a maroon!”
(I have trouble translating this in Japan and Europe)

